

bootchart2, e4rat and
readahead

can we speed up the boot process?

Nick Morrott
October 2012

Motivations

• monitor HDD/SSD performance
• increase boot speed
• identify bottlenecks
• identify unused services

before we start...

● hardware used:
– IBM/Lenovo X60s laptop (1.66GHz)

– Western Digital Scorpio Blue HDD (80GB)

– Samsung 830 series SSD (128GB)

● software used:
– Debian GNU/Linux testing (wheezy)

– 3.2.0 kernel

monitoring performance

what tools do you need?

● bootchart2 is a kernel data collection tool
(written in C)

● pybootchartgui is an interactive boot
process viewer (python/GTK2)

● to install:

 # apt-get install bootchart2 pybootchartgui

bootchart2 usage

● to grab kernel performance data, append
the following to the kernel command line
(e.g. 'e'dit an entry in the grub menu):

quiet initcall_debug printk.time=y init=/sbin/bootchartd

● results stored in /var/log/bootchart.tgz
● no kernel modifications needed

pybootchartgui usage

● once boot data has been collected, you
can analyse it interactively in the GUI:

$ pybootchartgui -i

● generate visuals of the boot process:

$ pybootchartgui -f [png|svg|pdf] -o PATH

● grab the boot time:

$ pybootchartgui --boot-time

increasing boot speed

speeding things up

boot times can be reduced by:
– increasing raw disk I/O performance

– optimising caching/placement of files

– starting only the services you need

– altering the order services are started

– altering the way services are started

increasing raw disk I/O

● problem: boot process produces a lot of
random reads and writes (many small files)

● simple ways to increase disk I/O:
– using a mechanical disk with faster rpm

4,200 < 5,400 < 7,200 < 10,000

– using a solid state disk (SSD)

– using a faster disk interface
1.5Gb/s < 3Gb/s < 6Gb/s

optimising file caching/placement

● rotating disks have inherent latency whilst
repositioning read/write heads between
reads

● caching or optimising the physical
placement of files should therefore reduce
seek times

(Note that SSDs have uniform access
times across the device)

readahead

● aims to optimise boot process using a
readahead cache (no physical reordering
of files on disk or ext4 dependency)

apt-get install readahead-fedora

● comprises readahead-collector which
generates list of files used during boot, and
readahead which populates cache of
required files early in boot sequence

readahead usage

● to trigger an update manually (e.g. after
significant changes to services):

touch ./readahead_collect

(reboot the system to regenerate file list)

● run the readahead-collector tool monthly
via cron to keep the list of cached boot files
optimised over time

e4rat

● moves boot files into contiguous sequence
of blocks, allowing fast sequential reads

● loads boot files into readahead cache,
massively increasing cache hit rate

● requires ext4 and 2.6.31+ kernel (uses the
ext4 online defragmentation ioctl)

● can make significant improvements to boot
speed (from 45s to 15s in example data)

e4rat usage

● e4rat-collect
– add 'init=/sbin/e4rat-collect' to kernel cmd

● e4rat-realloc
– switch to runlevel 1

– e4rat-realloc /var/lib/e4rat/startup.log

● e4rat-preload
– add 'init=/sbin/e4rat-preload' to kernel cmd

init/service configuration

● Dependency-based sysvinit configuration
aims to ensure services do not block
needlessly

● new init daemon replacements (e.g.
Upstart, systemd) use architectures
designed to increase concurrency and/or
start services when required

init/service configuration

● Debian determines complex service
dependencies automatically using insserv,
generating symlinks in /etc/rcS.d

● it is possible to manually reorder services
but managing dependencies can be
complex and configs overwritten

● symlinks processed lexicographically

identifying bottlenecks

spotting CPU bottlenecks

● bootchart2 includes output showing
processes in order of CPU usage

● makes it easy to see processes which are
taking a lot of CPU (differences between
HDD/SSD likely small)

● udevd and modprobe are likely to be
amongst the most CPU intensive (module
loading/device mgt)

spotting I/O bottlenecks

● bootchart2 also includes output showing
processes in order of I/O usage

● analysis here is likely to show larger
differences between rotating HDDs and
SSDs, especially when a process produces
lots of random reads/writes

● modprobe is likely to be the most I/O
intensive process

unused services

unused services

● checking the output of bootchart2 you may
notice services being started that you don't
recognise and/or that are not used

● these may include:
– default services installed during installation

– unused services installed long ago

unused services

● if you don't recognise a service:
– check its manpage / package details

$ man <servicename>

$ dpkg -S /path/to/service

● If you decide it's definitely surplus to
requirements, uninstall via your package
manager

conclusions

conclusions

● opportunity to look under the hood at the
boot process in detail

● very straightforward data collection
● clear visual output
● results of installing an SSD?

boot time
reduced by 80%

to < 8s

performance analysis

HDD SSD

readahead (disabled) 39.18s 8.05s

readahead (enabled) 33.03s 7.84s

● most effective change was installing SSD
● readahead most effective on HDD

● timing shows grub -> display manager

links

● bootchart2 / pybootchartgui

https://github.com/mmeeks/bootchart

● readahead

https://fedorahosted.org/readahead/

● e4rat

http://e4rat.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

