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Motivations

• monitor HDD/SSD performance
• increase boot speed
• identify bottlenecks
• identify unused services



  

before we start...

● hardware used:
– IBM/Lenovo X60s laptop (1.66GHz)

– Western Digital Scorpio Blue HDD (80GB)

– Samsung 830 series SSD (128GB)

● software used:
– Debian GNU/Linux testing (wheezy)

– 3.2.0 kernel



  

monitoring performance



  

what tools do you need?

● bootchart2 is a kernel data collection tool 
(written in C)

● pybootchartgui is an interactive boot 
process viewer (python/GTK2)

● to install:

     # apt-get install bootchart2 pybootchartgui



  

bootchart2 usage

● to grab kernel performance data, append 
the following to the kernel command line 
(e.g. 'e'dit an entry in the grub menu):

quiet initcall_debug printk.time=y init=/sbin/bootchartd

● results stored in /var/log/bootchart.tgz
● no kernel modifications needed



  

pybootchartgui usage

● once boot data has been collected, you 
can analyse it interactively in the GUI:

$ pybootchartgui -i

● generate visuals of the boot process:

$ pybootchartgui -f [png|svg|pdf] -o PATH

● grab the boot time:

$ pybootchartgui --boot-time



  

increasing boot speed



  

speeding things up

boot times can be reduced by:
– increasing raw disk I/O performance

– optimising caching/placement of files

– starting only the services you need

– altering the order services are started

– altering the way services are started



  

increasing raw disk I/O

● problem: boot process produces a lot of 
random reads and writes (many small files)

● simple ways to increase disk I/O:
– using a mechanical disk with faster rpm

4,200 < 5,400 < 7,200 < 10,000

– using a solid state disk (SSD)

– using a faster disk interface
1.5Gb/s < 3Gb/s < 6Gb/s



  

optimising file caching/placement

● rotating disks have inherent latency whilst 
repositioning read/write heads between 
reads

● caching or optimising the physical 
placement of files should therefore reduce 
seek times

(Note that SSDs have uniform access 
times across the device)



  

readahead

● aims to optimise boot process using a 
readahead cache (no physical reordering 
of files on disk or ext4 dependency)

# apt-get install readahead-fedora

● comprises readahead-collector which 
generates list of files used during boot, and 
readahead which populates cache of 
required files early in boot sequence



  

readahead usage

● to trigger an update manually (e.g. after 
significant changes to services):

# touch ./readahead_collect

(reboot the system to regenerate file list)

● run the readahead-collector tool monthly 
via cron to keep the list of cached boot files 
optimised over time



  

e4rat

● moves boot files into contiguous sequence 
of blocks, allowing fast sequential reads

● loads boot files into readahead cache, 
massively increasing cache hit rate

● requires ext4 and 2.6.31+ kernel (uses the 
ext4 online defragmentation ioctl)

● can make significant improvements to boot 
speed (from 45s to 15s in example data)



  

e4rat usage

● e4rat-collect
– add 'init=/sbin/e4rat-collect' to kernel cmd

● e4rat-realloc
– switch to runlevel 1

– e4rat-realloc /var/lib/e4rat/startup.log

● e4rat-preload
– add 'init=/sbin/e4rat-preload' to kernel cmd



  

init/service configuration

● Dependency-based sysvinit configuration 
aims to ensure services do not block 
needlessly

● new init daemon replacements (e.g. 
Upstart, systemd) use architectures 
designed to increase concurrency and/or 
start services when required



  

init/service configuration

● Debian determines complex service 
dependencies automatically using insserv, 
generating symlinks in /etc/rcS.d

● it is possible to manually reorder services 
but managing dependencies can be 
complex and configs overwritten

● symlinks processed lexicographically



  

identifying bottlenecks



  

spotting CPU bottlenecks

● bootchart2 includes output showing 
processes in order of CPU usage

● makes it easy to see processes which are 
taking a lot of CPU (differences between 
HDD/SSD likely small)

● udevd and modprobe are likely to be 
amongst the most CPU intensive (module 
loading/device mgt)



  

spotting I/O bottlenecks

● bootchart2 also includes output showing 
processes in order of I/O usage

● analysis here is likely to show larger 
differences between rotating HDDs and 
SSDs, especially when a process produces 
lots of random reads/writes

● modprobe is likely to be the most I/O 
intensive process



  

unused services



  

unused services

● checking the output of bootchart2 you may 
notice services being started that you don't 
recognise and/or that are not used

● these may include:
– default services installed during installation

– unused services installed long ago



  

unused services

● if you don't recognise a service:
– check its manpage / package details

$ man <servicename>

$ dpkg -S /path/to/service

● If you decide it's definitely surplus to 
requirements, uninstall via your package 
manager



  

conclusions



  

conclusions

● opportunity to look under the hood at the 
boot process in detail

● very straightforward data collection
● clear visual output
● results of installing an SSD?



  

boot time 
reduced by 80% 

to < 8s



  

performance analysis

HDD SSD

readahead (disabled) 39.18s 8.05s

readahead (enabled) 33.03s 7.84s

● most effective change was installing SSD
● readahead most effective on HDD

● timing shows grub -> display manager



  

links

● bootchart2 / pybootchartgui

https://github.com/mmeeks/bootchart

● readahead

https://fedorahosted.org/readahead/

● e4rat

http://e4rat.sourceforge.net/
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